KIMS Q&A

Yeongduk Kim

Sejong University
Lawrence Livermore National Laboratory

Experimental Status and Target Mass

• 2012, 10 – 2013, 12

· 2014. 1. -

CsI(Tl) Crystal 8x8x30 cm³ (8.7 kg) + 3" PMT (9269QA)

• 2005. 12 - 2006.3 4 crystals ran \rightarrow limits

• 2009. 9 - 2012.10. 12 crystals (total 104.4kg) \rightarrow limits, modulations

12 crystals in test mode. \rightarrow PMT upgrades.

upgrade run, KIMS-NaI, AMoRE-DARK

Backgrounds after passive and active Shielding

Туре	Source	Level (events/keV/kg/day)	activity
muon	neutron	<0.01	
external	PMT-U	0.2-0.4	0.32(0.09) Bq
	PMT-Th	0.1-0.25	0.16(0.03) Bq
	PMT-K	0.15-0.25	0.35(0.07) Bq
internal	¹³⁷ Cs	0.3-0.5	1.40(0.80) mBq/kg
	¹³⁴ Cs	0.2-0.4	8.10(1.67) mBq/kg
	⁸⁷ Rb	~0.3	
	Surface Alpha	0.05-0.23	
	U,Th	<0.01	
Total		2.0-2.5	

Detector Discrimination

- In KIMS, the discrimination power is by statistical analysis, rather t han event by event basis.
- Discrimination power is calculated as;
 the 90% confidence background level / total background level.

events	Level	Discrimination Power
Nuclear recoil	0.01-0.02	100-200
Surface alpha	0.05-0.23	9-40

Energy Threshold

- Trigger threshold ~ 1 keV
- Analysis threshold: 2 keV
- Nuclear recoil Acceptance @2 keV (threshold) ~ 0.4

Multiple hit events are analyzed with cuts applied to calc ulate cut efficiency.

Sensitivity versus WIMP mass

KIMS current(2013.3) sensitivities

Wimp Mass	5	10	100	1000	10000
Current SI	3.0e-39	1.35e-40	2.32e-43	1.56e-42	1.51e-41
Current SD			1.65e-38	7.94e-38	7.46e-37

AMoRE-DARK

- natCanatMoO₄ scintillating crystals
- in bolometer mode.
- ~ 200 kg year data.
- High sensitivity in low mass WIMP.
- <10⁻⁵ dru background
- Expect 10⁻⁴³ cm² @ 5GeV WIMP mas s.

Bolometer R&D

Current sensing SQUID

Meander type MMC sensor

Ø2cm×200nm gold thermlization pad

Ø4×4cm³ CaMoO₄

Copper sample holder

VM2000 foil

Scintillating bolometer with multiple target

MMC sensor.

 $DE \sim 10 \text{ keV}$ at present

Goal = 5 keV

Teflon coated phosphor-bronze

Experimental Challenges.

- There are abundant low energy events in current CsI(Tl) crystals which are certa inly not due to physical radiation. At present these events are reduced by variou s cuts developed and efficiencies for these cuts are evaluated multiple Compton hit events.
- We have to understand the origin of these events.
- At present, various new PMTs are tested at underground coupled CsI(Tl) crystal
 s.

New PMT test: R6956MOD SEL PMT + Csl(Tl) Still we have \sim 3 keV noise.

Experimental Challenges.

• We estimated that current Y2L depth(700m) is still deep enough for next plan for NaI(Tl) crystal experiment and bolometer upgrade.

Measured & simulated neutron energy spectra

Muon induced neutrons at CsI position.

- Data:
 - (4.5 ± 0.93) x10⁻² counts/(liter-days)
- G4 simulation w/ muons
 - (3.3 ± 0.18) x10⁻² counts/(liter-days)
- →< 0.003 dru @ 2 keV
- \rightarrow ~ 10⁻⁵ dru with bolometer & muon veto

Annual Modulation

10

- 2.5 year data(75530 kg days) analyzed for annual modulation signal.
- The threshold of nuclear recoil energy > 10 keVnr

Amplitude

DAMA		KIMS	
Energy	Amplitude	Energy	Limit (90% CL)
2-4 keV	0.0170±0.0024	3-6 keV	< 0.0119 (2.6 σ)
2-5 keV	0.0129±0.0018	3-7 keV	< 0.0136
2-6 keV	0.0097±0.0015	3-8 keV	< 0.0120

Stability of the Experiment

item	Amplitude (events/keV/kg/day)
PMT gain	< 0.0015
Temperature modulation	< 10-4

9) Unique Capabilities

- Do you have unique capabilities to identify whether a signal is due to WIMPs, asid e from the standard event by event discrimination and multiple scattering? → No
- Does your technology allow different targets in the same experiment? If so, what c hanges are required to make use of these? → with CaMoO4 bolometer, we have Ca, O, and Mo targets.
- Does your experiment have sensitivity to dark matter interactions other than spin- i ndependent or spin-dependent? → No

10) Determining WIMP properties and astrophysical parameters

Multiple target scintillating bol ometer is interesting for low m ass WIMP and also mass decisi on for WIMPs.